前言
在Java中我们最常用的集合类毫无疑问就是Map
,其中HashMap
作为Map
最重要的实现类在我们代码中出现的评率也是很高的。
我们对HashMap最常用的操作就是put
和get
了,那么你知道它是怎么实现的吗?知道HashMap的底层原理吗?你知道从jdk7到jdk8,HashMap发生了什么变化吗?
那么我们就带着这些疑问,一起来探秘HashMap。
首先声明本文这次讲的HashMap基于Jdk1.7.0_79,不同版本略有差异。Jdk1.8版本的日后讨论。
HashMap的数据结构
我们先从HashMap的数据结构谈起,先了解它的数据结构存储结构,后面看它的代码实现就容易多了。
HashMap底层数据结构是由数组和链表来实现对数据的存储,但数组和链表基本上是两个极端。为什么这么说咱们继续往下看。
数组
数组的存储空间是连续的,占用内存严重,即使是空的也要分配内存,故空间复杂度很大。但数组的二分查找时间复杂度小,为O(1);
数组的特点是:寻址容易,插入和删除困难;
链表
链表的存储空间是可以离散的,占用内存比较宽松,可以动态增加链表长度,故空间复杂度很小,但由于它是不连续的,查找插入删除操作会很麻烦,故时间复杂度很大,为O(N);
链表的特点是:寻址困难,插入和删除容易。
哈希表
那么我们能不能综合两者的优点,设计出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要讲的哈希表。
哈希表((Hash table)既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便。
哈希表有多种不同的实现方式,接下来我们探讨的是最常用的一种实现方式–拉链法,我们可以理解为“链表的数组” ,如图:
从上图我们可以发现哈希表是由数组+链表组成的,在一个长度为16的数组中,每个元素存储的是一个链表的头结点。
那么这些元素是按照什么样的规则存储到数组中呢?
一般情况是通过hash(key)%len获得,也就是计算出元素的key的哈希值,然后用哈希值对数组长度取模得到的即为该元素存储到数组中的index。
比如上述哈希表中,85%16=5,149%16=5,197%16=5。
所以hash值为85、149、197的k-v对都存储在数组下标为5的位置。
HashMap底层数据结构的原理就是使用的上述的哈希表,HashMap其实也是一个线性的数组实现的,所以可以理解为其存储数据的容器就是一个线性数组。
这可能让我们很不解,一个线性的数组怎么实现按键值对来存取数据呢?
如上图所示,HashMap做了一些处理。
首先HashMap里面实现了一个静态内部类Entry,其重要的属性有 key , value, next,从属性key,value我们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean。
我们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面。
这数组里存的其实是每一个链表的head节点,然后根据Entry的next属性关联链表的每个节点。
/**
* The table, resized as necessary. Length MUST Always be a power of two.
*/
transient Entry[] table;
HashMap的存取实现
既然是线性数组,为什么能随机存取?这里HashMap用了一个小算法,利用hash算法散列,大致是这样实现的:
1 | // 存储时: |
1)put
疑问:如果两个key通过hash%Entry[].length得到的index相同,会不会有覆盖的危险?
答案是不会,因为这里HashMap里面也用到了链式数据结构的一个概念。形如上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。
举个例子, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。
一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?
HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;
这样我们发现index=0的地方其实存了A,B,C三个键值对,他们通过next这个属性链接在一起。所以疑问不用担心。
也就是说数组中存储的是最后插入的元素,相同位置的其他元素用next属性关联。即,通过散列后计算得到相同index的元素会在一条链上,并通过next属性连接。
到这里为止,HashMap的大致实现,我们应该已经清楚了。具体代码如下:
1 | public V put(K key, V value) { |
当然HashMap里面也包含一些优化方面的实现,这里也说一下。
比如:Entry[]的长度一定后,随着map里面数据的越来越长,这样同一个index的链就会很长,肯定会影响性能。
所以HashMap里面设置了一个增长因子,随着map的size越来越大,Entry[]会以一定的规则加长长度。
这个就是上面代码注释里提到的如果size超过threshold,则扩充table大小。hash(key)%new length再散列
,这个一会儿在下面详细说明。
2)get
1 | public V get(Object key) { |
3)null key的存取
null key总是存放在Entry[]数组的第一个元素。
1 | private V putForNullKey(V value) { |
4)确定数组index:hashcode % table.length取模
HashMap存取时,都需要计算当前key应该对应Entry[]数组哪个元素,即计算数组下标;算法如下:
1 | /** |
按位取并,作用上相当于取模mod或者取余%。
这意味着数组下标相同,并不表示hashCode相同。
5)table初始大小
1 | /** |
1 | /** |
Jdk1.7和之前的版本不同的是我们推迟初始化直到我们确实需要它。即并没有在new的时候就初始化数组,在put的时候判断数组为空时再调用inflateTable初始化HashMap。
另外需要注意的是table初始大小并不是构造函数中的initialCapacity!!
而是 >= initialCapacity的2的n次幂!!!——为什么这么设计呢?——
另外,调用无参构造时的初始化大小是16,增长因子是0.75
解决hash冲突的办法
- 开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列)
- 再哈希法
- 链地址法
- 建立一个公共溢出区
Java中HashMap的解决办法就是采用的链地址法。
再散列rehash过程
从上面的代码addEntry方法可以看出,每次都会判断size是不是已经超过threshold,即当哈希表的容量超过默认容量时,必须调整table的大小,对数组进行扩容。
当容量已经达到最大可能值时,那么该方法就将容量调整到Integer.MAX_VALUE返回。
扩容时,需要创建一张新表,将原表的映射到新表中。具体代码如下:
1 | void resize(int newCapacity) { |
由于篇幅原因,将在下一篇探秘jdk1.8的HashMap。
参考:
jdk1.7.0_79源码
https://zhuanlan.zhihu.com/p/44478231